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@ Wind and solar central to economy-wide decarbonization
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@ Wind and solar amplify “fuel uncertainty”

_ How big is the challenge?
+ Grid operators have always
* In 2019 CAISO ancillary service procurement cost

balanced variability and ef _
: . was ~$150M. Wholesale market ~$8 Billion. E3 is
uncertainty in demand and supply targeting reducing total CAISO system production

<+ Wind and solar generators

costs by 1-3% (~$100M) and GHG emissions by
~1.5 MMT CO,/yr

increase the magnitude of supply- + Billions of dollars worldwide

side Variability In a highly renewable future CAISO grid, solar

_ o curtailment could be reduced by 15% when at least
* Potential negative impacts to 15% of CAISO FRP is procured from VERs
reliability if not properly managed
- o i How far could net
+ “Net Load” is frequently used to e Y load reajonab/y be
: : : L - expected to go up
quantify balancing requirements BN, T e or down between
* Net load = Load — Wind Generation — ) time intervals?

Net Load
\

Solar Generation

v
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@ Scheduling timeframes and reserve needs

* AGC not

. sir_nulated in
5> Minute éutoma_uc this study
Real Time eneration

Control

Energy (AGC)*

15 Minute

Day Ahead Market

Scheduling
Timeframe

Operational flexibility decreases

Forecast accuracy increases

Headroom |Load
Forecast

»
>

Instaneous
Load

Forecast

Upward

Regulation
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1
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1
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\
\

«J Machine learning will provide uncertainty
requirement for 15-minute dispatch
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@ Root-Mean-Square -> Machine Learning

Our ARPA-E project focuses on Root-mean-square (RMS) Machine learning could offer
reserves for forecast uncertainty of method is frequently used significant advantages
load, wind, and solar — a non-event type
of reserve

Flexibility Reserve =

2 2 2
Jqﬂohour-load +¢70h0ur-wind £a cD70h0ur-PV

Operating x
/ Reserve \

Nonevent Event

~N 7))
Regulating Following Contingency Ramping AssumeS that error c . .
Reserve Reserve Reserve Reserve between L W S ‘g Can |nC|ude under|y|ng
T T -vvE . .
Automatic Manual nstantaneous - . E
(Wit Optimal (Pt of Opimal " A components is o Correlgthgs resultmr? from
Dispatch) Dispatch)
g P primary uncorrelated B coinci ent Weat er
primary o
secondary
secondary
tertiary
4 Historical record has Machine learning can “fill
§ very sparse data to .g in” the data record by
By create a prediction o including drivers of
E’ interval at P95+ under/overforecast events
\§
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Predicting Net Load Forecast Error

Output
Net Load Forecast Error

@ T,+15

+ Calendar Inputs

* Day of year, hour of day, and day index

+ Day index captures systemic changes over time ;
such as forecast accuracy, addition of new g

solar/wind, etc.

T,-30 T,-15 T, To+15

15-min market forecasts
for Load, Solar and Wind

Goal is to quantify forecast error
between 15- and 5- minute forecasts

+ Forecast Inputs

5-min market forecasts
for Load, Solar and Wind

+ Weather Inputs Weather inputs (irradiance, wind speed, temperature) under development >
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Study process

Machine learning generates reserve

needs using artificial neural network

PLEXOS production simulation of ;
CAISO system validates operability Summary and CAISO Comparison

* Quantify optimal level of
f reserve to hold
- * Estimate cost and GHG
- savings

AN SN sAM xpm g sem Compare machine learning
reserves to CAISO current

' D | V4 E\O S practice

0
.
v,

:

Inputs: “Hidden” Outputs: 3500
forecasts layers reserve 3,000
and actuals requirements 2,500

Generation (MW)
~

Reservet1

Solar
Wind
Load
Weather

Avl//. Mn Alﬁ Reserve,,

4‘ “ .0,“( /

8 8

Adjust machine
learning if system is
not operable
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(&) Wind and Solar Flexibility

+ Predicting net load implies that solar and wind FirstSolar/ TECO / E3 study on solar
won't be curtailed dispatch for Tampa Florida

* Net load = Load — [uncontrollable] Wind -

[uncontrollable] Solar 100%

<+ A highly renewable grid will experience frequent
curtailment

©
=]
X

Must-Take .
Curtailable

Downward Dispatch

« Balancing requirements are overestimated during
Full Flexibility

curtailment events

emissions without solar)
~ [+2]
Q Q
X X

« “Supply” of balancing resources can include controllable
wind + solar

CO, Emissions (% of system

. . . (60%
+ Machln_e Iearnlr_lg will be used to' develop =% sk 108 1N 208 os% 308
balancing requirements when wind and solar are AR SOl P B ROLaTal (%)

partially curtailed
Operating and scheduling solar power

plants in a more flexible manner results in
lower CO, emissions

» Also to develop limits on curtailed wind + solar
contributing to flexibility/ramping needs
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Machine learning provides renewable reserve limits

Machine Learning estimates Production simulation quantifies
correlations between solar/wind benefits of solar and wind
and net load forecast error reserves and ensures operability

Input Data:
Solar (or wind) forecast possibilities

It could be very sunny

POWER
0-8 == 1 3 Max Available Power Actual Power
/J-—\-‘\ +
It could be a ,. A A —

partially cloudy

Power Output
(Relative to Nameplate)

0‘4 60% of Max Available Power Amranse
It is highly
0.2 unlikely to be | + e
very cloudy
g ¢ 24\
o 4 8 12 16 20 H ﬂ /
Hour of Day

Adjust machine learning
or production simulation if
system is not operable

Figure source: https://www.nrel.gov/docs/fy170sti/67799.pdf
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<+ Funding:
+ E3 to work with the California Independent System ARPA-E
Operator in formulating and evaluating E3’s machine- Perform
learning module and PLEXOS model arpa-@

B, U.S. DEPARTMENT OF

« CAISO to provide system operator perspective on current f‘a ENERGY

practices

« E3 to deliver tool to CAISO that allows for dynamic reserves
predictions, CAISO to support E3 by evaluating this tool

+ E3 to release final version of this tool to CAISO and ARPA-E for + P -
their use at project conclusion artnership

+ E3 would like to thank CAISO and ARPA-E for their &> California ISO
support for this project
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Project Manager
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Thank You!

Energy and Environmental Economics, Inc. (E3)
44 Montgomery Street, Suite 1500

San Francisco, CA 94104

Tel' 415-391-5100

Web http://www.ethree.com

Arne Olson, Senior Partner (arne@ethree.com)
Dr. Jimmy Nelson, Managing Consultant

Dr. John Stevens, Senior Consultant

Dr. Yuchi Sun, Consultant




